SCAMCMC() getADMBCallArgs() getN()
|
MCMC settings class |
SCAPars() stkmodel() n1model() srmodel() fmodel() qmodel() qMod() vmodel() vMod() srPars() srCovar() srFrml() fPars() fCovar() fFrml() qPars() qCovar() qFrml() vPars() vCovar() vFrml() m(<SCAPars>) wt(<SCAPars>) propagate(<SCAPars>) iter(<SCAPars>)
|
Model parameters class |
a4aFit() a4aFit() clock() fitSumm() stock.n(<a4aFit>) harvest(<a4aFit>,<ANY>) catch.n(<a4aFit>) index(<a4aFit>) show(<a4aFit>) logLik(<a4aFit>) iter(<a4aFit>) computeCatchDiagnostics(<a4aFit>)
|
S4 class a4aFit |
computeCatchDiagnostics()
|
S4 class a4aFitCatchDiagn |
a4aFitMCMC() a4aFitMCMC() a4aFitSA(<a4aFitMCMC>) a4aFit(<a4aFitMCMC>) as.mcmc() burnin()
|
S4 class a4aFitMCMC |
residuals(<a4aFit>)
|
S4 class a4aFitResiduals |
a4aFitSA() a4aFitSA() a4aFit(<a4aFitSA>) pars() m(<a4aFitSA>) wt(<a4aFitSA>) qmodel(<a4aFitSA>) fmodel(<a4aFitSA>) srmodel(<a4aFitSA>) n1model(<a4aFitSA>) vmodel(<a4aFitSA>) stkmodel(<a4aFitSA>) show(<a4aFitSA>) submodels(<a4aFitSA>) iter(<a4aFitSA>) a4aFitSAs()
|
S4 class a4aFitSA |
a4aGr() grMod() `grMod<-`() grInvMod() `grInvMod<-`() params(<a4aGr>) `params<-`(<a4aGr>,<FLPar>) distr(<a4aGr>) `distr<-`(<a4aGr>,<character>) vcov(<a4aGr>) `vcov<-`(<a4aGr>,<numeric>)
|
Individual growth class |
a4aInternal()
|
Stock assessment model advanced method |
a4aM() show(<a4aM>) shape() `shape<-`() level() `level<-`() trend() `trend<-`()
|
Natural mortality class |
a4aStkParams() m(<a4aStkParams>) wt(<a4aStkParams>) mat(<a4aStkParams>) fMod() `fMod<-`() n1Mod() `n1Mod<-`() srMod() `srMod<-`() params(<a4aStkParams>) `params<-`(<a4aStkParams>,<FLPar>) coefficients() `coefficients<-`() distr(<a4aStkParams>) `distr<-`(<a4aStkParams>,<character>) vcov(<a4aStkParams>) `vcov<-`(<a4aStkParams>,<array>) propagate(<a4aStkParams>) iter(<a4aStkParams>)
|
Stock parameters class |
`+`(<FLStock>,<a4aFit>) `+`(<FLIndices>,<a4aFit>)
|
+ methods |
getYidx() is.empty() niters() dims(<a4aStkParams>) replaceZeros()
|
Assorted methods needed by FLa4a |
breakpts()
|
Breakpoints |
bubbles(<a4aFitResiduals>,<missing>)
|
Bubbles plot of standardized log residuals |
`formula<-`() coef() `coef<-`()
|
coefficients extract and replacement |
collapseSeasons()
|
Collapse seasons |
defaultFmod() defaultQmod() defaultN1mod() defaultVmod() defaultSRmod()
|
Default sub-models |
a4aSCA()
|
deprecated |
genFLIndex()
|
Methods to generate FLIndex objects |
genFLQuant()
|
Methods to generate FLQuant objects |
genFLStock()
|
Methods to generate FLStock objects |
getADMBHessian() getADMBCovariance()
|
Get ADMB Hessian |
getAcor()
|
compute log-correlation matrix |
getCov()
|
Get covariance matrix |
getK()
|
Get K |
getTPL()
|
Get TPL with ADMB code |
getX()
|
Get model matrix |
hakeGSA7
|
hakeGSA7 |
hakeGSA7.idx
|
hakeGSA7.idx |
index_cd_len
|
index_cd_len |
index_pt_len
|
index_pt_len |
index_sp_len
|
index_sp_len |
l2a()
|
Method to convert length-based data to age-based |
m(<a4aM>)
|
natural mortality |
ma()
|
Model averaging (experimental) |
`*`(<FLStock>,<a4aFitSA>) `*`(<FLStock>,<SCAPars>) `*`(<FLIndices>,<a4aFitSA>) `*`(<FLIndices>,<SCAPars>)
|
* methods |
mvrnorm(<numeric>,<a4aM>,<missing>,<missing>,<missing>,<missing>)
|
natural mortality |
mvrcop(<numeric>,<a4aGr>)
|
mvrcop |
mvrcop()
|
Simulation using copula models |
mvrnorm(<numeric>,<a4aGr>,<ANY>,<ANY>,<ANY>,<ANY>)
|
mvrnorm |
mvrtriangle(<numeric>,<a4aGr>)
|
mvrtriangle |
mvrtriangle()
|
Simulation with a copula model and triangular distributions |
pars2dim()
|
Check that the second dimension in params is "iter" |
plot(<a4aFitResiduals>,<missing>) plot(<a4aFitCatchDiagn>,<missing>)
|
Plot of standardized log residuals |
plot(<a4aFit>,<FLStock>)
|
plot for fitted catch-at-age |
plot(<a4aFit>,<FLIndices>)
|
testing |
predict(<a4aGr>)
|
predict for a4aGr |
predict(<a4aFitSA>) predict(<SCAPars>)
|
Predict methods for SCA |
qqmath(<a4aFitResiduals>,<missing>)
|
qqplot of standardized log residuals |
`range<-`(<a4aM>,<ANY>,<numeric>)
|
range for a4aM objects |
rfLen
|
redfish length data |
rfLen.stk
|
rfLen.stk |
rfTrawl.idx
|
rfTrawl.idx |
rfTrawlJmp.idx
|
rfTrawlJmp.idx |
rfTrawlTrd.idx
|
rfTrawlTrd.idx |
sca()
|
Statistical catch-at-age method |
sca.sa()
|
Call sca inside the mp function |
sep.sa()
|
Call a separable SA inside the mp function |
shake_len
|
shake_len |
simulate()
|
Simulation methods for SCA |
southernHakeLen
|
Southern hake length data |
stdlogres()
|
Standardized log residuals |
submodel() params(<submodel>) sMod() iter(<submodel>) propagate(<submodel>) formula(<submodel>)
|
Submodel class |
submodels() submodels() corBlocks() params(<submodels>) sMod(<submodels>) formula(<submodels>) `corBlocks<-`() `$<-`(<submodels>,<submodel>) `[[<-`(<submodels>,<character>,<missing>) `[[<-`(<submodels>,<numeric>,<missing>) propagate(<submodels>) iter(<submodels>)
|
Submodels class |
vcov(<a4aFitSA>) vcov(<SCAPars>) vcov(<submodels>) vcov(<submodel>) `vcov<-`(<a4aFitSA>,<numeric>) `vcov<-`(<SCAPars>,<numeric>) `vcov<-`(<a4aStkParams>,<numeric>) `vcov<-`(<submodel>,<numeric>) `vcov<-`(<submodel>,<matrix>) `vcov<-`(<submodel>,<array>)
|
Variance-covariance matrix |
wireframe(<FLQuant>,<missing>)
|
wireframe plot for FLQuant |