mvnorm-a4aM.Rd
Method to simulate multivariate normal parameters for an a4aM
object.
# S4 method for numeric,a4aM,missing,missing,missing,missing
mvrnorm(n = 1, mu)
the number of iterations to be generated
an a4aM
object
an a4aM
object with n iterations
mod1 <- FLModelSim(model=~exp(-age-0.5))
mod2 <- FLModelSim(model=~k^0.66*t^0.57, params=FLPar(matrix(c(0.4,10,0.5,11),
ncol=2, dimnames=list(params=c("k","t"), iter=1:2))),
vcov=array(c(0.004,0.,0.,0.001,0.006,0.,0.,0.003), dim=c(2,2,2)))
mod3 <- FLModelSim(model=~1+b*v, params=FLPar(b=0.05))
mObj <- a4aM(shape=mod1, level=mod2, trend=mod3,
range=c(min=0,max=15,minyear=2000,maxyear=2003,minmbar=0,maxmbar=0))
mObj <- mvrnorm(100, mObj)
# Generate 100 iterations with no trend over time
m(mObj, v=c(1,1,1,1))
#> An object of class "FLQuant"
#> iters: 100
#>
#> , , unit = unique, season = all, area = unique
#>
#> year
#> age 2000 2001 2002
#> 0 2.3336e+00(3.09e-01) 2.3336e+00(3.09e-01) 2.3336e+00(3.09e-01)
#> 1 8.5850e-01(1.14e-01) 8.5850e-01(1.14e-01) 8.5850e-01(1.14e-01)
#> 2 3.1582e-01(4.18e-02) 3.1582e-01(4.18e-02) 3.1582e-01(4.18e-02)
#> 3 1.1618e-01(1.54e-02) 1.1618e-01(1.54e-02) 1.1618e-01(1.54e-02)
#> 4 4.2742e-02(5.66e-03) 4.2742e-02(5.66e-03) 4.2742e-02(5.66e-03)
#> 5 1.5724e-02(2.08e-03) 1.5724e-02(2.08e-03) 1.5724e-02(2.08e-03)
#> 6 5.7845e-03(7.66e-04) 5.7845e-03(7.66e-04) 5.7845e-03(7.66e-04)
#> 7 2.1280e-03(2.82e-04) 2.1280e-03(2.82e-04) 2.1280e-03(2.82e-04)
#> 8 7.8285e-04(1.04e-04) 7.8285e-04(1.04e-04) 7.8285e-04(1.04e-04)
#> 9 2.8799e-04(3.82e-05) 2.8799e-04(3.82e-05) 2.8799e-04(3.82e-05)
#> 10 1.0595e-04(1.40e-05) 1.0595e-04(1.40e-05) 1.0595e-04(1.40e-05)
#> 11 3.8976e-05(5.16e-06) 3.8976e-05(5.16e-06) 3.8976e-05(5.16e-06)
#> 12 1.4338e-05(1.90e-06) 1.4338e-05(1.90e-06) 1.4338e-05(1.90e-06)
#> 13 5.2748e-06(6.99e-07) 5.2748e-06(6.99e-07) 5.2748e-06(6.99e-07)
#> 14 1.9405e-06(2.57e-07) 1.9405e-06(2.57e-07) 1.9405e-06(2.57e-07)
#> 15 7.1386e-07(9.46e-08) 7.1386e-07(9.46e-08) 7.1386e-07(9.46e-08)
#> year
#> age 2003
#> 0 2.3336e+00(3.09e-01)
#> 1 8.5850e-01(1.14e-01)
#> 2 3.1582e-01(4.18e-02)
#> 3 1.1618e-01(1.54e-02)
#> 4 4.2742e-02(5.66e-03)
#> 5 1.5724e-02(2.08e-03)
#> 6 5.7845e-03(7.66e-04)
#> 7 2.1280e-03(2.82e-04)
#> 8 7.8285e-04(1.04e-04)
#> 9 2.8799e-04(3.82e-05)
#> 10 1.0595e-04(1.40e-05)
#> 11 3.8976e-05(5.16e-06)
#> 12 1.4338e-05(1.90e-06)
#> 13 5.2748e-06(6.99e-07)
#> 14 1.9405e-06(2.57e-07)
#> 15 7.1386e-07(9.46e-08)
#>
#> units: NA
# Generate replicates based on iteration-specific multivariate distributions
# (as defined by params() and vcov())
params(mod2)
#> An object of class "FLPar"
#> iters: 2
#>
#> params
#> k t
#> 0.45(0.0741) 10.50(0.7413)
#> units: NA NA
vcov(mod2)
#> , , 1
#>
#> [,1] [,2]
#> [1,] 0.004 0.000
#> [2,] 0.000 0.001
#>
#> , , 2
#>
#> [,1] [,2]
#> [1,] 0.006 0.000
#> [2,] 0.000 0.003
#>
m1<-mvrnorm(mod2)
c(params(m1))
#> [1] 0.280260 10.014835 0.439241 10.947385
# Generate replicates based on a single multivariate distribution (here the
# median of params() and vcov() is used)
mvrnorm(2,mod2)
#> An object of class "FLModelSim"
#> Slot "model":
#> ~k^0.66 * t^0.57
#> <environment: 0x564e054a79d0>
#>
#> Slot "params":
#> An object of class "FLPar"
#> iters: 2
#>
#> params
#> k t
#> 0.38762(0.03457) 10.50066(0.00553)
#> units: NA NA
#>
#> Slot "vcov":
#> numeric(0)
#>
#> Slot "distr":
#> [1] "norm"
#>
m2<-mvrnorm(2,mod2)
c(params(m2))
#> [1] 0.4611115 10.5530379 0.5033600 10.4705197