createInits.Rd
Function for generating intial values for the parameters of the bbm
function,
given information on catches, survey indices and instantaneous rate of biomass decrease, g.
createInits(object, indicesB, indicesP, ...)
# S4 method for FLQuant,FLQuants,FLQuants
createInits(object, indicesB, indicesP, findicesB, findicesP, g)
# S4 method for FLStock,ANY,ANY
createInits(object, indicesB, indicesP, findicesB = NULL, findicesP = NULL, g)
# S4 method for FLQuant,FLIndices,FLIndices
createInits(object, indicesB, indicesP, findicesB = NULL, findicesP = NULL, g)
# S4 method for FLQuant,FLQuant,FLQuant
createInits(object, indicesB, indicesP, findicesB, findicesP, g)
An FLQuant
with catch information (for recruits and adults) or an FLStock
.
Abundance indices in total biomass (element of class: FLQuants
, FLQuant
or FLIndices
) from surveys.
Please assign a survey name to each index.
Percentage of recruits in biomass (element of class: FLQuants
, FLQuant
or FLIndices
) from surveys.
Please assign a survey name to each proportion.
A vector
with fraction of the year corresponding to each of the indicesB.
A vector
with fraction of the year corresponding to each of the indicesP.
A vector
with information on instantaneous rate of biomass decrease, g = M - G, for recruits (rec) and adults (adult).
An object of class FLPar.
Methods exist for various calculations based on the output class (FLPar
). For details: ?FLPar
.
# Load data
data(ane)
# Case: object='FLQuant'; indicesB=indicesP='FLQuants'
inits1 <- createInits( catch.ane,
indicesB=lapply( indicesB.ane, function(x) x@index),
indicesP=lapply( indicesP.ane, function(x) x@index),
findicesB=unlist(lapply( indicesB.ane, function(x) mean(range(x)[c('startf','endf')]))),
findicesP=unlist(lapply( indicesP.ane, function(x) mean(range(x)[c('startf','endf')]))),
g=control.ane@g )
class(inits1)
#> [1] "FLPar"
#> attr(,"package")
#> [1] "FLCore"
# Case: object='FLQuant'; indicesB=indicesP='ANY'
stock <- FLStock(catch.n=catch.ane, catch.wt=catch.ane*0+1)
units(stock@catch.wt) <- ''
stock@catch <- quantSums(stock@catch.n*stock@catch.wt)
inits2 <- createInits( stock, indicesB=indicesB.ane, indicesP=indicesP.ane,
g=control.ane@g )
class(inits2)
#> [1] "FLPar"
#> attr(,"package")
#> [1] "FLCore"
# Case: object='FLQuant'; indicesB=indicesP='FLIndices'
inits3 <- createInits( catch.ane,
indicesB=indicesB.ane, indicesP=indicesP.ane,
g=control.ane@g )
class(inits3)
#> [1] "FLPar"
#> attr(,"package")
#> [1] "FLCore"
# Case: object='FLQuant'; indicesB=indicesP='FLQuant'
inits4 <- createInits( catch.ane,
indicesB=indicesB.ane[[1]]@index, indicesP=indicesP.ane[[1]]@index,
findicesB=c( depm=(indicesB.ane[[1]]@range[['startf']]+indicesB.ane[[1]]@range[['endf']])/2),
findicesP=c( depm=(indicesP.ane[[1]]@range[['startf']]+indicesP.ane[[1]]@range[['endf']])/2),
g=control.ane@g )
class(inits4)
#> [1] "FLPar"
#> attr(,"package")
#> [1] "FLCore"
# Run assessment (with the different initial values)
run0 <- bbm(catch.ane, indicesB=indicesB.ane, indicesP=indicesP.ane, control=control.ane, inits=inits.ane)
#> outer mgc: 2.991218
#> outer mgc: 2.983554
#> outer mgc: 2.994433
#> outer mgc: 2.980339
#> outer mgc: 2.989589
#> outer mgc: 2.985185
#> outer mgc: 2.990111
#> outer mgc: 2.984663
#> outer mgc: 2.986485
#> outer mgc: 2.988286
#> outer mgc: 2.987929
#> outer mgc: 2.986843
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987385
#> outer mgc: 2.987387
#> outer mgc: 2.987385
#> outer mgc: 2.987387
#> outer mgc: 2.987382
#> outer mgc: 2.98739
#> outer mgc: 2.987383
#> outer mgc: 2.987388
#> outer mgc: 2.98738
#> outer mgc: 2.987392
#> outer mgc: 2.987369
#> outer mgc: 2.987403
#> outer mgc: 2.987363
#> outer mgc: 2.987409
#> outer mgc: 2.987322
#> outer mgc: 2.98745
#> outer mgc: 2.98723
#> outer mgc: 2.987541
#> outer mgc: 2.987124
#> outer mgc: 2.987647
#> outer mgc: 2.986773
#> outer mgc: 2.987998
#> outer mgc: 2.986082
#> outer mgc: 2.988689
#> outer mgc: 2.986608
#> outer mgc: 2.988164
#> outer mgc: 3.008474
#> outer mgc: 2.96631
#> outer mgc: 2.986905
#> outer mgc: 2.987863
#> outer mgc: 2.986374
#> outer mgc: 2.988397
#> outer mgc: 2.986725
#> outer mgc: 2.988047
#> outer mgc: 2.9823
#> outer mgc: 2.992471
#> outer mgc: 2.985849
#> outer mgc: 2.988921
#> outer mgc: 2.987386
#> outer mgc: 2.991218
#> outer mgc: 2.983554
#> outer mgc: 2.994433
#> outer mgc: 2.980339
#> outer mgc: 2.989589
#> outer mgc: 2.985185
#> outer mgc: 2.990111
#> outer mgc: 2.984663
#> outer mgc: 2.986485
#> outer mgc: 2.988286
#> outer mgc: 2.987929
#> outer mgc: 2.986843
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987386
#> outer mgc: 2.987385
#> outer mgc: 2.987387
#> outer mgc: 2.987385
#> outer mgc: 2.987387
#> outer mgc: 2.987382
#> outer mgc: 2.98739
#> outer mgc: 2.987383
#> outer mgc: 2.987388
#> outer mgc: 2.98738
#> outer mgc: 2.987392
#> outer mgc: 2.987369
#> outer mgc: 2.987403
#> outer mgc: 2.987363
#> outer mgc: 2.987409
#> outer mgc: 2.987322
#> outer mgc: 2.98745
#> outer mgc: 2.98723
#> outer mgc: 2.987541
#> outer mgc: 2.987124
#> outer mgc: 2.987647
#> outer mgc: 2.986773
#> outer mgc: 2.987998
#> outer mgc: 2.986082
#> outer mgc: 2.988689
#> outer mgc: 2.986608
#> outer mgc: 2.988164
#> outer mgc: 3.008474
#> outer mgc: 2.96631
#> outer mgc: 2.986905
#> outer mgc: 2.987863
#> outer mgc: 2.986374
#> outer mgc: 2.988397
#> outer mgc: 2.986725
#> outer mgc: 2.988047
#> outer mgc: 2.9823
#> outer mgc: 2.992471
#> outer mgc: 2.985849
#> outer mgc: 2.988921
#> outer mgc: 282597.9
#> Warning: NaNs produced
#> Warning: NaNs produced
run1 <- bbm(catch.ane, indicesB=indicesB.ane, indicesP=indicesP.ane, control=control.ane, inits=inits1)
#> outer mgc: 39.64267
#> outer mgc: 39.71708
#> outer mgc: 39.67773
#> outer mgc: 39.68201
#> outer mgc: 39.68549
#> outer mgc: 39.67427
#> outer mgc: 39.68033
#> outer mgc: 39.67941
#> outer mgc: 39.67136
#> outer mgc: 39.68838
#> outer mgc: 39.69113
#> outer mgc: 39.66863
#> outer mgc: 34.92743
#> outer mgc: 118.0477
#> outer mgc: 34.97071
#> outer mgc: 102.6195
#> outer mgc: 30.84582
#> outer mgc: 337.7543
#> outer mgc: 36.4707
#> outer mgc: 197.5393
#> outer mgc: 34.27665
#> outer mgc: 2476.293
#> outer mgc: 35.3283
#> outer mgc: 1411.059
#> outer mgc: 40.55045
#> outer mgc: 38.8074
#> outer mgc: 39.67984
#> outer mgc: 39.6799
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.68136
#> outer mgc: 39.67838
#> outer mgc: 39.67911
#> outer mgc: 39.68064
#> outer mgc: 39.67987
#> outer mgc: 39.64267
#> outer mgc: 39.71708
#> outer mgc: 39.67773
#> outer mgc: 39.68201
#> outer mgc: 39.68549
#> outer mgc: 39.67427
#> outer mgc: 39.68033
#> outer mgc: 39.67941
#> outer mgc: 39.67136
#> outer mgc: 39.68838
#> outer mgc: 39.69113
#> outer mgc: 39.66863
#> outer mgc: 34.92743
#> outer mgc: 118.0477
#> outer mgc: 34.97071
#> outer mgc: 102.6195
#> outer mgc: 30.84582
#> outer mgc: 337.7543
#> outer mgc: 36.4707
#> outer mgc: 197.5393
#> outer mgc: 34.27665
#> outer mgc: 2476.293
#> outer mgc: 35.3283
#> outer mgc: 1411.059
#> outer mgc: 40.55045
#> outer mgc: 38.8074
#> outer mgc: 39.67984
#> outer mgc: 39.6799
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.68136
#> outer mgc: 39.67838
#> outer mgc: 39.67911
#> outer mgc: 39.68064
#> outer mgc: 128036.1
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: Negative biomass values at the end of the year (not shown in the output). Please check inputs.
#> Warning: Negative biomass values at the end of the year (not shown in the output). Please check inputs.
run2 <- bbm(catch.ane, indicesB=indicesB.ane, indicesP=indicesP.ane, control=control.ane, inits=inits2)
#> outer mgc: 39.64267
#> outer mgc: 39.71708
#> outer mgc: 39.67773
#> outer mgc: 39.68201
#> outer mgc: 39.68549
#> outer mgc: 39.67427
#> outer mgc: 39.68033
#> outer mgc: 39.67941
#> outer mgc: 39.67136
#> outer mgc: 39.68838
#> outer mgc: 39.69113
#> outer mgc: 39.66863
#> outer mgc: 34.92743
#> outer mgc: 118.0477
#> outer mgc: 34.97071
#> outer mgc: 102.6195
#> outer mgc: 30.84582
#> outer mgc: 337.7543
#> outer mgc: 36.4707
#> outer mgc: 197.5393
#> outer mgc: 34.27665
#> outer mgc: 2476.293
#> outer mgc: 35.3283
#> outer mgc: 1411.059
#> outer mgc: 40.55045
#> outer mgc: 38.8074
#> outer mgc: 39.67984
#> outer mgc: 39.6799
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.68136
#> outer mgc: 39.67838
#> outer mgc: 39.67911
#> outer mgc: 39.68064
#> outer mgc: 39.67987
#> outer mgc: 39.64267
#> outer mgc: 39.71708
#> outer mgc: 39.67773
#> outer mgc: 39.68201
#> outer mgc: 39.68549
#> outer mgc: 39.67427
#> outer mgc: 39.68033
#> outer mgc: 39.67941
#> outer mgc: 39.67136
#> outer mgc: 39.68838
#> outer mgc: 39.69113
#> outer mgc: 39.66863
#> outer mgc: 34.92743
#> outer mgc: 118.0477
#> outer mgc: 34.97071
#> outer mgc: 102.6195
#> outer mgc: 30.84582
#> outer mgc: 337.7543
#> outer mgc: 36.4707
#> outer mgc: 197.5393
#> outer mgc: 34.27665
#> outer mgc: 2476.293
#> outer mgc: 35.3283
#> outer mgc: 1411.059
#> outer mgc: 40.55045
#> outer mgc: 38.8074
#> outer mgc: 39.67984
#> outer mgc: 39.6799
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.68136
#> outer mgc: 39.67838
#> outer mgc: 39.67911
#> outer mgc: 39.68064
#> outer mgc: 128036.1
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: Negative biomass values at the end of the year (not shown in the output). Please check inputs.
#> Warning: Negative biomass values at the end of the year (not shown in the output). Please check inputs.
run3 <- bbm(catch.ane, indicesB=indicesB.ane, indicesP=indicesP.ane, control=control.ane, inits=inits3)
#> outer mgc: 39.64267
#> outer mgc: 39.71708
#> outer mgc: 39.67773
#> outer mgc: 39.68201
#> outer mgc: 39.68549
#> outer mgc: 39.67427
#> outer mgc: 39.68033
#> outer mgc: 39.67941
#> outer mgc: 39.67136
#> outer mgc: 39.68838
#> outer mgc: 39.69113
#> outer mgc: 39.66863
#> outer mgc: 34.92743
#> outer mgc: 118.0477
#> outer mgc: 34.97071
#> outer mgc: 102.6195
#> outer mgc: 30.84582
#> outer mgc: 337.7543
#> outer mgc: 36.4707
#> outer mgc: 197.5393
#> outer mgc: 34.27665
#> outer mgc: 2476.293
#> outer mgc: 35.3283
#> outer mgc: 1411.059
#> outer mgc: 40.55045
#> outer mgc: 38.8074
#> outer mgc: 39.67984
#> outer mgc: 39.6799
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.68136
#> outer mgc: 39.67838
#> outer mgc: 39.67911
#> outer mgc: 39.68064
#> outer mgc: 39.67987
#> outer mgc: 39.64267
#> outer mgc: 39.71708
#> outer mgc: 39.67773
#> outer mgc: 39.68201
#> outer mgc: 39.68549
#> outer mgc: 39.67427
#> outer mgc: 39.68033
#> outer mgc: 39.67941
#> outer mgc: 39.67136
#> outer mgc: 39.68838
#> outer mgc: 39.69113
#> outer mgc: 39.66863
#> outer mgc: 34.92743
#> outer mgc: 118.0477
#> outer mgc: 34.97071
#> outer mgc: 102.6195
#> outer mgc: 30.84582
#> outer mgc: 337.7543
#> outer mgc: 36.4707
#> outer mgc: 197.5393
#> outer mgc: 34.27665
#> outer mgc: 2476.293
#> outer mgc: 35.3283
#> outer mgc: 1411.059
#> outer mgc: 40.55045
#> outer mgc: 38.8074
#> outer mgc: 39.67984
#> outer mgc: 39.6799
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67988
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.67987
#> outer mgc: 39.68136
#> outer mgc: 39.67838
#> outer mgc: 39.67911
#> outer mgc: 39.68064
#> outer mgc: 128036.1
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: Negative biomass values at the end of the year (not shown in the output). Please check inputs.
#> Warning: Negative biomass values at the end of the year (not shown in the output). Please check inputs.
namdel <- c("q_acoustic","psi_acoustic","xi_acoustic") # we will take only one of the indices --> need to delete the parameters related to other indices
control <- control.ane
control@param.fix <- control@param.fix[dimnames(control@param.fix)$params[!dimnames(control@param.fix)$params %in% namdel],]
run4 <- bbm(catch.ane, indicesB=indicesB.ane[[1]]@index, indicesP=indicesP.ane[[1]]@index,
findicesB=c( depm=(indicesB.ane[[1]]@range[['startf']]+indicesB.ane[[1]]@range[['endf']])/2),
findicesP=c( depm=(indicesP.ane[[1]]@range[['startf']]+indicesP.ane[[1]]@range[['endf']])/2),
control=control, inits=inits4)
#> outer mgc: 30.89383
#> outer mgc: 30.9025
#> outer mgc: 30.90129
#> outer mgc: 30.89504
#> outer mgc: 30.92529
#> outer mgc: 30.87106
#> outer mgc: 28.35394
#> outer mgc: 33.44371
#> outer mgc: 31.42956
#> outer mgc: 30.36709
#> outer mgc: 30.78393
#> outer mgc: 31.01422
#> outer mgc: 31.19494
#> outer mgc: 30.60145
#> outer mgc: 33.16442
#> outer mgc: 30.94429
#> outer mgc: 30.94317
#> outer mgc: 30.85314
#> outer mgc: 30.90157
#> outer mgc: 30.89476
#> outer mgc: 30.89428
#> outer mgc: 30.90205
#> outer mgc: 30.8986
#> outer mgc: 30.89773
#> outer mgc: 30.89828
#> outer mgc: 30.89805
#> outer mgc: 30.89692
#> outer mgc: 30.89941
#> outer mgc: 30.89863
#> outer mgc: 30.8977
#> outer mgc: 30.89853
#> outer mgc: 30.8978
#> outer mgc: 30.89814
#> outer mgc: 30.89819
#> outer mgc: 30.89812
#> outer mgc: 30.89821
#> outer mgc: 30.89814
#> outer mgc: 30.89818
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89383
#> outer mgc: 30.9025
#> outer mgc: 30.90129
#> outer mgc: 30.89504
#> outer mgc: 30.92529
#> outer mgc: 30.87106
#> outer mgc: 28.35394
#> outer mgc: 33.44371
#> outer mgc: 31.42956
#> outer mgc: 30.36709
#> outer mgc: 30.78393
#> outer mgc: 31.01422
#> outer mgc: 31.19494
#> outer mgc: 30.60145
#> outer mgc: 33.16442
#> outer mgc: 30.94429
#> outer mgc: 30.94317
#> outer mgc: 30.85314
#> outer mgc: 30.90157
#> outer mgc: 30.89476
#> outer mgc: 30.89428
#> outer mgc: 30.90205
#> outer mgc: 30.8986
#> outer mgc: 30.89773
#> outer mgc: 30.89828
#> outer mgc: 30.89805
#> outer mgc: 30.89692
#> outer mgc: 30.89941
#> outer mgc: 30.89863
#> outer mgc: 30.8977
#> outer mgc: 30.89853
#> outer mgc: 30.8978
#> outer mgc: 30.89814
#> outer mgc: 30.89819
#> outer mgc: 30.89812
#> outer mgc: 30.89821
#> outer mgc: 30.89814
#> outer mgc: 30.89818
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89817
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 30.89816
#> outer mgc: 223032.6
#> Warning: NaNs produced
#> Warning: NaNs produced
# Plot assessed populations
biomass <- FLQuants()
runs <- paste("run",0:4,sep="")
names(runs) <- c('bc','run1','run2','run3','only_depm')
for (i in 1:length(runs)) biomass[[i]] <- quantSums(stock.bio(get(runs[i])))
names(biomass) <- names(runs)
plot( biomass)