lr.test.Rd
Compare model fit performance among the models specified based on log-likelihood ratio's. Different in log-likelihood is calculated and degrees of freedom are given. P values are specified assuming a chi-quared distribution.
lr.test(object,...,type="sequential")
In combination with an FLSAM
object: additional objects of the same type (need at least 1)
The type of comparison to make. A "sequential" comparison compares object 1 against object 2, object 2 against object 3,... whilt a "first" comparison compares object 1 against object 2, object 1 against object 3,...
A summary table of the test characteristics is returned
Log-likelihood tests can only be used for nested models (i.e. model parameterisation is different) and are not appropriate for different input data or different model types.
#- Load the data
data(HERAS.sams)
#- Run lr ratio test on example FLSAMs object
lr.test(HERAS.sams)
#> statistics
#> models Comparison Neg. log likel # Parameters
#> 1 North Sea Herring 1 vs. 2 309.174660403857 18
#> 2 North Sea Herring 2 2 vs. 3 168.861261408612 16
#> 3 North Sea Herring 3 3 vs. 4 169.571440412931 15
#> 4 North Sea Herring 4 172.990527772618 14
#> statistics
#> models Likel difference Degrees of freedom P value
#> 1 North Sea Herring -140.31 2 1
#> 2 North Sea Herring 2 0.71 1 0.2333
#> 3 North Sea Herring 3 3.42 1 0.0089
#> 4 North Sea Herring 4
#- Run lr ratio test on individual FLSAM objects
lr.test(HERAS.sams[[1]],HERAS.sams[[2]],HERAS.sams[[3]])
#> statistics
#> models Comparison Neg. log likel # Parameters
#> 1 North Sea Herring 1 vs. 2 309.174660403857 18
#> 2 North Sea Herring 2 2 vs. 3 168.861261408612 16
#> 3 North Sea Herring 3 169.571440412931 15
#> statistics
#> models Likel difference Degrees of freedom P value
#> 1 North Sea Herring -140.31 2 1
#> 2 North Sea Herring 2 0.71 1 0.2333
#> 3 North Sea Herring 3