Objects of various FLCore classes can be converted into other classes,
both basic R ones, like data.frame
, and others defined in the package. For
the specifics of the precise calculations carried out for each pair of
classes, see below.
object | Object to be converted. |
---|---|
Class | Name of the class to convert the object to, |
An object of the requested class.
The six dimensions of an `FLArray` are converted into seven columns, named `quant` (or any other name given to the first dimension in the object), `year`, `unit`, `season`, `area`, `iter` and `data`. The last one contains the actual numbers stored in the array. `units` are stored as an attribute to the `data.frame`. The `year` and `data` columns are of type `numeric`, while all others are `factor`.
The two or more dimensions of an *FLPar* objects are converted into three or more columns. For a 2D objects, they are named *params*, *iter* and *data*. The last one contains the actual numbers stored in the array, in a column type `numeric`, while all others are `factor`.
base::as, base::coerce
#> quant year unit season area iter data #> 1 1 1 unique all unique 1 0.725298945 #> 2 2 1 unique all unique 1 0.195409250 #> 3 3 1 unique all unique 1 -0.413650614 #> 4 4 1 unique all unique 1 -1.328259249 #> 5 5 1 unique all unique 1 1.730665919 #> 6 1 2 unique all unique 1 0.187037560 #> 7 2 2 unique all unique 1 -0.935728727 #> 8 3 2 unique all unique 1 0.083062326 #> 9 4 2 unique all unique 1 0.160518049 #> 10 5 2 unique all unique 1 0.202105749 #> 11 1 3 unique all unique 1 -1.995176929 #> 12 2 3 unique all unique 1 -0.227655067 #> 13 3 3 unique all unique 1 -0.010629297 #> 14 4 3 unique all unique 1 0.576946108 #> 15 5 3 unique all unique 1 -0.309330062 #> 16 1 4 unique all unique 1 -0.361320050 #> 17 2 4 unique all unique 1 -1.178973937 #> 18 3 4 unique all unique 1 -0.351561307 #> 19 4 4 unique all unique 1 0.682996726 #> 20 5 4 unique all unique 1 0.396960455 #> 21 1 5 unique all unique 1 1.103677767 #> 22 2 5 unique all unique 1 0.283071115 #> 23 3 5 unique all unique 1 -0.119032853 #> 24 4 5 unique all unique 1 -0.850775902 #> 25 5 5 unique all unique 1 -0.004881436 #> 26 1 6 unique all unique 1 -0.555004527 #> 27 2 6 unique all unique 1 -0.005464035 #> 28 3 6 unique all unique 1 0.596582274 #> 29 4 6 unique all unique 1 0.930140787 #> 30 5 6 unique all unique 1 -1.545631788 #> 31 1 7 unique all unique 1 -0.393499692 #> 32 2 7 unique all unique 1 1.127952598 #> 33 3 7 unique all unique 1 -0.426971110 #> 34 4 7 unique all unique 1 0.945087699 #> 35 5 7 unique all unique 1 -1.527816578 #> 36 1 8 unique all unique 1 0.359213899 #> 37 2 8 unique all unique 1 -0.857820367 #> 38 3 8 unique all unique 1 0.810534835 #> 39 4 8 unique all unique 1 -0.219024446 #> 40 5 8 unique all unique 1 0.008369587 #> 41 1 9 unique all unique 1 -0.290741234 #> 42 2 9 unique all unique 1 -0.215558718 #> 43 3 9 unique all unique 1 0.621358173 #> 44 4 9 unique all unique 1 -0.913926411 #> 45 5 9 unique all unique 1 0.313734983 #> 46 1 10 unique all unique 1 0.879905108 #> 47 2 10 unique all unique 1 -0.351130640 #> 48 3 10 unique all unique 1 -1.824247200 #> 49 4 10 unique all unique 1 -1.279339877 #> 50 5 10 unique all unique 1 -1.592609993 #> 51 1 11 unique all unique 1 -1.472094029 #> 52 2 11 unique all unique 1 0.868931876 #> 53 3 11 unique all unique 1 0.407377006 #> 54 4 11 unique all unique 1 -0.949259933 #> 55 5 11 unique all unique 1 -0.086388772 #> 56 1 12 unique all unique 1 -0.811054239 #> 57 2 12 unique all unique 1 0.221324492 #> 58 3 12 unique all unique 1 -1.023152353 #> 59 4 12 unique all unique 1 -0.004465181 #> 60 5 12 unique all unique 1 0.880233578 #> 61 1 13 unique all unique 1 -1.982349310 #> 62 2 13 unique all unique 1 -0.585358329 #> 63 3 13 unique all unique 1 -1.845920215 #> 64 4 13 unique all unique 1 -0.347057895 #> 65 5 13 unique all unique 1 1.689775598 #> 66 1 14 unique all unique 1 0.379050795 #> 67 2 14 unique all unique 1 -0.459959239 #> 68 3 14 unique all unique 1 0.767678135 #> 69 4 14 unique all unique 1 1.707361650 #> 70 5 14 unique all unique 1 1.131363415 #> 71 1 15 unique all unique 1 0.890468643 #> 72 2 15 unique all unique 1 1.881834283 #> 73 3 15 unique all unique 1 -0.642540707 #> 74 4 15 unique all unique 1 0.837664328 #> 75 5 15 unique all unique 1 -0.567759708 #> 76 1 16 unique all unique 1 0.535235735 #> 77 2 16 unique all unique 1 -0.530982732 #> 78 3 16 unique all unique 1 0.729320408 #> 79 4 16 unique all unique 1 -0.552114798 #> 80 5 16 unique all unique 1 0.031801214 #> 81 1 17 unique all unique 1 -1.891338980 #> 82 2 17 unique all unique 1 -0.056759478 #> 83 3 17 unique all unique 1 0.865373596 #> 84 4 17 unique all unique 1 0.220081461 #> 85 5 17 unique all unique 1 -0.595956703 #> 86 1 18 unique all unique 1 -0.122960377 #> 87 2 18 unique all unique 1 0.078194024 #> 88 3 18 unique all unique 1 -0.963582785 #> 89 4 18 unique all unique 1 -1.253456258 #> 90 5 18 unique all unique 1 0.512253919 #> 91 1 19 unique all unique 1 -0.211692262 #> 92 2 19 unique all unique 1 -0.745340417 #> 93 3 19 unique all unique 1 -1.193234702 #> 94 4 19 unique all unique 1 2.055037250 #> 95 5 19 unique all unique 1 1.632423556 #> 96 1 20 unique all unique 1 -0.532611267 #> 97 2 20 unique all unique 1 0.023402388 #> 98 3 20 unique all unique 1 -0.948465802 #> 99 4 20 unique all unique 1 0.153762418 #> 100 5 20 unique all unique 1 -1.588615779#> params iter data #> 1 phi 1 0.25186335 #> 2 rho 1 0.54177652 #> 3 phi 2 -0.65353669 #> 4 rho 2 0.39091841 #> 5 phi 3 -0.79287363 #> 6 rho 3 1.11073027 #> 7 phi 4 0.27292991 #> 8 rho 4 0.24271767 #> 9 phi 5 0.71286203 #> 10 rho 5 0.92988702 #> 11 phi 6 0.28297534 #> 12 rho 6 2.07908063 #> 13 phi 7 0.36346946 #> 14 rho 7 0.71074226 #> 15 phi 8 0.06014947 #> 16 rho 8 0.28901744 #> 17 phi 9 -0.81620199 #> 18 rho 9 4.53796306 #> 19 phi 10 -0.52723224 #> 20 rho 10 0.43943025