Skip to contents

Methods to compute totals over selected dimensions of FLQuant objects These methods return an object of same dimensions as the input but with the sums along the first (yearTotals) or second dimension (quantTotals). Although the names might appear contradictory, it must be noted that what each method really returns are the totals over the selected dimension.

Usage

quantTotals(x, ...)

Generic function

quantTotals(x)

yearTotals(x)

See also

Author

The FLR Team

Examples


flq <- FLQuant(rlnorm(100), dim=c(10,10))
quantTotals(flq)
#> An x of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>      year
#> quant 1     2     3     4     5     6     7     8     9     10   
#>    1  29.72 29.72 29.72 29.72 29.72 29.72 29.72 29.72 29.72 29.72
#>    2  10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50
#>    3  12.86 12.86 12.86 12.86 12.86 12.86 12.86 12.86 12.86 12.86
#>    4  40.20 40.20 40.20 40.20 40.20 40.20 40.20 40.20 40.20 40.20
#>    5  22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25 22.25
#>    6  10.40 10.40 10.40 10.40 10.40 10.40 10.40 10.40 10.40 10.40
#>    7  10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01
#>    8  11.39 11.39 11.39 11.39 11.39 11.39 11.39 11.39 11.39 11.39
#>    9   7.57  7.57  7.57  7.57  7.57  7.57  7.57  7.57  7.57  7.57
#>    10 31.49 31.49 31.49 31.49 31.49 31.49 31.49 31.49 31.49 31.49
#> 
#> units:  NA 
# See how the values obtained by yearSums are being replicated
  yearSums(flq)
#> An x of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>      year
#> quant 1    
#>    1  29.72
#>    2  10.50
#>    3  12.86
#>    4  40.20
#>    5  22.25
#>    6  10.40
#>    7  10.01
#>    8  11.39
#>    9   7.57
#>    10 31.49
#> 
#> units:  NA 
# Get the proportions by quant
  flq / quantTotals(flq)
#> An x of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>      year
#> quant 1       2       3       4       5       6       7       8       9      
#>    1  0.01023 0.47409 0.00525 0.03998 0.02383 0.25289 0.05358 0.00231 0.04892
#>    2  0.03086 0.11112 0.01174 0.14194 0.18326 0.06451 0.07643 0.08495 0.24569
#>    3  0.06614 0.06867 0.29438 0.26260 0.07426 0.03565 0.06832 0.01442 0.03910
#>    4  0.01149 0.03864 0.05541 0.11879 0.39762 0.05800 0.12611 0.02092 0.13613
#>    5  0.03437 0.00725 0.04639 0.47463 0.06513 0.05141 0.04521 0.02853 0.21485
#>    6  0.01348 0.15314 0.11469 0.27984 0.08541 0.03541 0.04460 0.07029 0.06860
#>    7  0.08931 0.05988 0.04078 0.00551 0.13142 0.12138 0.07521 0.02333 0.33385
#>    8  0.07608 0.04062 0.02189 0.02932 0.03823 0.10447 0.09593 0.27447 0.10596
#>    9  0.16448 0.18405 0.05075 0.05510 0.06761 0.18544 0.09877 0.02608 0.11062
#>    10 0.01423 0.01493 0.02987 0.01995 0.09938 0.00473 0.09559 0.02814 0.67446
#>      year
#> quant 10     
#>    1  0.08892
#>    2  0.04949
#>    3  0.07647
#>    4  0.03690
#>    5  0.03224
#>    6  0.13455
#>    7  0.11934
#>    8  0.21303
#>    9  0.05710
#>    10 0.01871
#> 
#> units:  NA 
# or year
  flq / yearTotals(flq)
#> An x of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>      year
#> quant 1       2       3       4       5       6       7       8       9      
#>    1  0.04827 0.62988 0.01487 0.04619 0.02595 0.45690 0.10331 0.00880 0.03452
#>    2  0.05145 0.05215 0.01174 0.05791 0.07048 0.04117 0.05205 0.11443 0.06123
#>    3  0.13506 0.03947 0.36058 0.13123 0.03498 0.02786 0.05699 0.02378 0.01193
#>    4  0.07335 0.06943 0.21217 0.18558 0.58550 0.14171 0.32887 0.10791 0.12991
#>    5  0.12140 0.00721 0.09831 0.41032 0.05307 0.06951 0.06525 0.08142 0.11346
#>    6  0.02225 0.07116 0.11356 0.11305 0.03252 0.02237 0.03008 0.09375 0.01693
#>    7  0.14193 0.02679 0.03887 0.00214 0.04818 0.07384 0.04883 0.02995 0.07931
#>    8  0.13755 0.02067 0.02374 0.01297 0.01594 0.07230 0.07085 0.40094 0.02864
#>    9  0.19760 0.06224 0.03657 0.01620 0.01874 0.08527 0.04848 0.02531 0.01987
#>    10 0.07115 0.02102 0.08959 0.02442 0.11464 0.00906 0.19529 0.11369 0.50420
#>      year
#> quant 10     
#>    1  0.21338
#>    2  0.04195
#>    3  0.07938
#>    4  0.11977
#>    5  0.05790
#>    6  0.11292
#>    7  0.09643
#>    8  0.19581
#>    9  0.03488
#>    10 0.04758
#> 
#> units:  NA