Skip to contents

FLQuant objects are joined along a single dimension, on which dimnames are different. This is the reverse operation to divide.

Usage

join(x, y, ...)

# S4 method for FLQuant,FLQuant
join(x, y)

# S4 method for FLQuants,missing
join(x, y)

Arguments

x

An object to join

y

An object to join

Value

A single object

Author

Iago Mosqueira (WMR)

Examples

data(ple4)
# JOIN over age dimension
x <- catch.n(ple4)[1,]
y <- catch.n(ple4)[2,]
join(x, y)
#> An object of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>    year
#> age 1957    1958    1959    1960    1961    1962    1963    1964    1965   
#>   1   42703   72733   99992   97351  105216   65816   51939  167733   41740
#>   2   40141   71295  120598  152894  135020  147179  111599  116859  446985
#>    year
#> age 1966    1967    1968    1969    1970    1971    1972    1973    1974   
#>   1   39663   37966   52596  109458  117963   73201   61075  245992  216252
#>   2  111166   98311   82428   87678  133995  126945   83724   76932  308599
#>    year
#> age 1975    1976    1977    1978    1979    1980    1981    1982    1983   
#>   1  187654  186977  311013  260242  237416  228049  185495  378858  312379
#>   2  237186  168021  142113  222931  198320  218847  269603  249567  462799
#>    year
#> age 1984    1985    1986    1987    1988    1989    1990    1991    1992   
#>   1  330326  468121 1083226  442683  374166  245186  205384  187958  168040
#>   2  315003  294918  417134 1047256  478976  438712  298563  258742  242447
#>    year
#> age 1993    1994    1995    1996    1997    1998    1999    2000    2001   
#>   1  104637   93290  126855  105190  272197   91658   91338  128526   97495
#>   2  211488  128363  128617  232415  255917  701954  186961  138480  187738
#>    year
#> age 2002    2003    2004    2005    2006    2007    2008    2009    2010   
#>   1  273412   91797  235515  172459  148427  190997  155534  167162  208143
#>   2  172176  531816  146920  271017  175206  177494  259601  177602  141436
#>    year
#> age 2011    2012    2013    2014    2015    2016    2017   
#>   1  163503   98149  129467  208745  127813  128908  115058
#>   2  175631  205694  177076  209915  226503  113194  143659
#> 
#> units:  1000 
# JOIN over year dimension
x <- catch.n(ple4)[,10:20]
y <- catch.n(ple4)[,21:25]
join(x, y)
#> An object of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>     year
#> age  1966     1967     1968     1969     1970     1971     1972     1973    
#>   1   39663.3  37965.7  52596.0 109457.7 117963.1  73200.7  61075.3 245992.4
#>   2  111166.4  98310.6  82428.0  87678.2 133995.3 126945.0  83724.5  76932.2
#>   3  462675.4 120682.1 105022.1  74641.7  66343.1 100832.4 108372.6  77394.2
#>   4   61390.1 259964.0  71629.9  59702.9  41494.6  39796.4  67677.2  74297.7
#>   5   35187.6  35582.3 157422.8  45774.7  39552.2  27756.8  26518.0  42478.6
#>   6   30721.8  20186.8  21932.6 103358.6  30184.5  25591.5  17801.0  16061.1
#>   7   15319.0  15625.6  11270.7  12474.5  57327.1  17180.6  15407.2  10556.6
#>   8   10118.0   8730.5   9465.0   6747.6   7215.5  33998.7  10747.2   9710.3
#>   9    5832.4   6397.3   5731.5   6186.0   4365.0   4767.9  23096.6   7321.8
#>   10  13434.0  12784.7  14154.4  15527.6  17101.3  16488.2  15528.8  26611.0
#>     year
#> age  1974     1975     1976     1977     1978     1979     1980     1981    
#>   1  216251.7 187654.3 186977.3 311012.8 260241.7 237416.2 228048.9 185495.1
#>   2  308599.0 237186.5 168020.9 142113.1 222931.1 198319.5 218847.0 269603.3
#>   3   66810.8 232622.9 162809.2 113342.5  96339.8 152671.1 139741.7 158997.6
#>   4   47873.8  36792.4 128298.6  96958.2  69719.7  56458.1  80323.5  65082.8
#>   5   40611.4  23001.2  17915.1  70724.5  58168.6  40407.8  28827.8  35922.2
#>   6   22360.2  18900.4  11094.1   9943.6  41726.3  31902.4  19874.1  13526.2
#>   7    8600.3  11126.0   9921.3   6354.8   5572.7  21132.3  15387.5   9994.9
#>   8    6360.4   4998.3   6528.9   5846.9   3587.0   2988.5  11113.5   8074.8
#>   9    6455.1   4079.0   3088.6   3861.3   3341.0   2028.7   1676.8   6106.6
#>   10  22141.9  17837.6  13249.7   9737.4   8318.6   7618.4   6699.4   5886.3
#> 
#> units:  1000 
div <- divide(catch.n(ple4), dim=1)
is(div)
#> [1] "FLQuants" "FLlst"    "list"     "vector"  
length(div)
#> [1] 10
join(div)
#> An object of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>     year
#> age  1957       1958       1959       1960       1961       1962      
#>   1    42702.66   72733.05   99992.13   97351.36  105215.69   65815.54
#>   2    40141.28   71294.94  120597.60  152894.50  135019.66  147178.83
#>   3    79353.02   52031.60   80618.90  116614.20  137289.10  129967.50
#>   4    56560.05   67368.68   37763.40   51480.30   72242.52   89048.40
#>   5    31888.26   35848.98   43350.57   24004.78   32458.56   46321.31
#>   6    10988.02   21828.30   23811.03   27315.98   14742.89   20597.37
#>   7    12049.59    8568.27   14322.21   13940.69   15632.32    8738.10
#>   8     9595.80    8610.92    5999.88    9719.19    9045.32    9787.41
#>   9     5495.25    7050.64    6932.95    4592.23    6532.14    5770.30
#>   10   11779.09   14773.43   16725.71   15503.41   12505.12   13593.85
#>     year
#> age  1963       1964       1965       1966       1967       1968      
#>   1    51938.98  167733.27   41740.48   39663.31   37965.74   52595.95
#>   2   111598.54  116858.90  446985.00  111166.40   98310.59   82427.96
#>   3   161466.70  126250.50  123478.00  462675.40  120682.10  105022.10
#>   4    83925.51   90727.70   61372.16   61390.10  259964.00   71629.90
#>   5    57929.89   52829.48   53769.44   35187.61   35582.32  157422.80
#>   6    30973.68   38431.54   32417.30   30721.82   20186.83   21932.60
#>   7    12304.87   17096.54   18841.81   15318.96   15625.57   11270.73
#>   8     5372.20    7257.27    9369.66   10117.96    8730.53    9465.05
#>   9     6709.53    3823.86    4806.34    5832.41    6397.31    5731.52
#>   10   16653.29   19738.48   16512.27   13434.04   12784.66   14154.41
#>     year
#> age  1969       1970       1971       1972       1973       1974      
#>   1   109457.72  117963.12   73200.74   61075.31  245992.44  216251.72
#>   2    87678.20  133995.30  126945.00   83724.50   76932.20  308599.00
#>   3    74641.70   66343.10  100832.40  108372.60   77394.22   66810.75
#>   4    59702.90   41494.61   39796.45   67677.23   74297.75   47873.80
#>   5    45774.70   39552.22   27756.81   26517.95   42478.64   40611.35
#>   6   103358.62   30184.47   25591.45   17801.04   16061.13   22360.23
#>   7    12474.47   57327.07   17180.59   15407.22   10556.57    8600.26
#>   8     6747.59    7215.49   33998.65   10747.18    9710.27    6360.36
#>   9     6186.04    4365.02    4767.89   23096.60    7321.75    6455.12
#>   10   15527.56   17101.29   16488.17   15528.78   26611.03   22141.89
#>     year
#> age  1975       1976       1977       1978       1979       1980      
#>   1   187654.33  186977.31  311012.79  260241.69  237416.19  228048.89
#>   2   237186.50  168020.90  142113.10  222931.10  198319.50  218847.00
#>   3   232622.90  162809.20  113342.50   96339.80  152671.10  139741.72
#>   4    36792.38  128298.60   96958.20   69719.70   56458.10   80323.48
#>   5    23001.21   17915.05   70724.47   58168.61   40407.81   28827.79
#>   6    18900.43   11094.15    9943.65   41726.33   31902.36   19874.09
#>   7    11126.04    9921.34    6354.82    5572.73   21132.34   15387.55
#>   8     4998.26    6528.95    5846.88    3587.01    2988.53   11113.54
#>   9     4078.97    3088.62    3861.27    3341.05    2028.66    1676.81
#>   10   17837.63   13249.71    9737.37    8318.56    7618.36    6699.37
#>     year
#> age  1981       1982       1983       1984       1985       1986      
#>   1   185495.15  378858.07  312379.15  330326.34  468120.57 1083225.66
#>   2   269603.30  249567.40  462798.80  315003.20  294917.80  417134.40
#>   3   158997.60  195147.39  177915.40  330543.20  227034.40  213479.40
#>   4    65082.75   69630.68   91099.41   93427.50  186569.17  128385.20
#>   5    35922.17   27199.44   29609.48   41553.29   46043.95   96350.40
#>   6    13526.22   16783.02   12738.97   14250.85   20729.69   23032.71
#>   7     9994.94    7064.21    8864.51    6893.69    7680.85   10371.03
#>   8     8074.76    5264.18    3930.15    5312.93    4138.25    4255.10
#>   9     6106.59    4501.20    3172.50    2486.08    3255.40    2437.65
#>   10    5886.32    8191.05    8233.28    6983.05    5857.16    6299.68
#>     year
#> age  1987       1988       1989       1990       1991       1992      
#>   1   442682.83  374165.61  245185.87  205383.51  187958.37  168039.58
#>   2  1047256.40  478975.90  438711.90  298563.10  258742.30  242447.10
#>   3   302191.00  746685.00  331436.00  307676.00  223193.20  201697.80
#>   4   114725.07  148044.90  337985.90  152615.20  153467.20  115796.60
#>   5    65923.14   56419.88   71205.46  168825.14   80728.20   82733.51
#>   6    46662.01   31129.37   26393.55   33025.90   78235.21   38323.92
#>   7    10445.49   19869.41   12392.43    9827.96   12398.30   31918.82
#>   8     5248.06    4881.37    8448.05    5182.11    4630.49    6547.11
#>   9     2503.27    2916.79    2412.42    4215.04    3060.81    3024.36
#>   10    6660.50    6327.28    5119.13    3977.21    5138.26    5860.65
#>     year
#> age  1993       1994       1995       1996       1997       1998      
#>   1   104636.60   93290.14  126854.53  105190.15  272197.35   91657.58
#>   2   211487.60  128362.70  128617.10  232415.20  255916.60  701954.20
#>   3   183104.50  156029.90  106282.90  129090.50  242378.70  221681.40
#>   4   100871.90   88971.80   79720.43   56087.87   58913.90   85780.00
#>   5    60965.29   51632.74   44764.95   38876.43   25344.58   24336.34
#>   6    40691.96   30198.53   25052.05   21493.70   18509.83   11435.31
#>   7    16523.26   17190.20   12590.23   10906.74    9435.01    7208.62
#>   8    15502.77    6601.74    6586.87    5404.86    4914.63    3754.64
#>   9     3569.78    6301.80    2542.41    2953.18    2644.70    2236.10
#>   10    5512.56    4370.61    4990.73    4174.69    4409.92    4065.62
#>     year
#> age  1999       2000       2001       2002       2003       2004      
#>   1    91337.92  128525.79   97495.00  273411.66   91796.79  235514.85
#>   2   186960.90  138479.50  187737.70  172176.50  531815.50  146919.67
#>   3   505281.00  147232.10  142364.40  199413.20  136174.20  311226.00
#>   4    76360.70  242206.10   92615.80   77923.40   74693.40   43158.15
#>   5    34618.15   32822.43  109946.10   41589.14   34002.05   32763.40
#>   6     9804.85   12638.84   12252.56   47176.75   20056.13   16254.67
#>   7     3720.12    3078.29    4697.26    5248.95   19344.91    7219.69
#>   8     2527.38    1433.52    1455.38    2162.48    1819.76    5516.38
#>   9     1623.54    1209.85     716.29     593.44     673.88     541.68
#>   10    3199.13    2395.19    1899.89    1503.05    1324.69    1330.89
#>     year
#> age  2005       2006       2007       2008       2009       2010      
#>   1   172458.80  148426.56  190996.81  155534.36  167161.84  208142.93
#>   2   271017.30  175205.50  177494.30  259601.30  177602.40  141436.20
#>   3    84388.60  183320.40  127413.40  120064.40  165611.40  125432.90
#>   4   117804.80   37951.03   79448.20   52002.37   56248.90  101973.80
#>   5    19322.44   52637.29   16996.50   36841.46   25518.30   29618.53
#>   6    14652.44    8757.52   26391.73    9157.63   19803.51   13736.46
#>   7     5814.47    6184.97    4385.02   14378.47    5198.22   11568.37
#>   8     2303.57    2302.40    2627.86    1806.28    5937.37    2261.77
#>   9     1902.16     829.78     738.38     776.27     563.45    2149.01
#>   10    1182.49    1743.94    1469.08    1475.94    1787.19    2029.21
#>     year
#> age  2011       2012       2013       2014       2015       2016      
#>   1   163502.68   98149.48  129467.17  208745.31  127812.76  128907.81
#>   2   175630.70  205693.78  177076.40  209915.05  226503.32  113194.28
#>   3   125474.80  184253.10  217019.50  167118.70  179280.50  195889.00
#>   4    92002.60   89537.10  119932.30  140221.90  114154.30  125580.90
#>   5    58469.50   56101.56   54291.80   69447.80   78925.40   65419.30
#>   6    16829.21   33838.48   30423.65   27804.45   36150.81   43845.72
#>   7     7720.61    8357.86   15653.39   15042.83   15185.55   19751.87
#>   8     5236.21    3640.73    4310.38    8559.20    7800.51    6880.26
#>   9      987.75    2763.26    2123.34    2339.97    3873.36    3037.44
#>   10    3674.02    4098.71    5958.17    6821.41    7393.56    8702.57
#>     year
#> age  2017      
#>   1   115058.24
#>   2   143659.04
#>   3   110813.00
#>   4   131782.60
#>   5    75562.10
#>   6    38451.76
#>   7    21449.14
#>   8     7873.59
#>   9     2567.24
#>   10    8882.65
#> 
#> units:  1000 
all.equal(join(divide(catch.n(ple4), dim=1)), catch.n(ple4))
#> [1] TRUE