Skip to contents

FLQuant objects are joined along a single dimension, on which dimnames are different. This is the reverse operation to divide.

Usage

join(x, y, ...)

# S4 method for class 'FLQuant,FLQuant'
join(x, y)

# S4 method for class 'FLQuants,missing'
join(x, y)

Arguments

x

An object to join

y

An object to join

Value

A single object

Author

Iago Mosqueira (WMR)

Examples

data(ple4)
# JOIN over age dimension
x <- catch.n(ple4)[1,]
y <- catch.n(ple4)[2,]
join(x, y)
#> An x of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>    year
#> age 1957    1958    1959    1960    1961    1962    1963    1964    1965   
#>   1   42703   72733   99992   97351  105216   65816   51939  167733   41740
#>   2   40141   71295  120598  152894  135020  147179  111599  116859  446985
#>    year
#> age 1966    1967    1968    1969    1970    1971    1972    1973    1974   
#>   1   39663   37966   52596  109458  117963   73201   61075  245992  216252
#>   2  111166   98311   82428   87678  133995  126945   83724   76932  308599
#>    year
#> age 1975    1976    1977    1978    1979    1980    1981    1982    1983   
#>   1  187654  186977  311013  260242  237416  228049  185495  378858  312379
#>   2  237186  168021  142113  222931  198320  218847  269603  249567  462799
#>    year
#> age 1984    1985    1986    1987    1988    1989    1990    1991    1992   
#>   1  330326  468121 1083226  442683  374166  245186  205384  187958  168040
#>   2  315003  294918  417134 1047256  478976  438712  298563  258742  242447
#>    year
#> age 1993    1994    1995    1996    1997    1998    1999    2000    2001   
#>   1  104637   93290  126855  105190  272197   91658   91338  128526   97495
#>   2  211488  128363  128617  232415  255917  701954  186961  138480  187738
#>    year
#> age 2002    2003    2004    2005    2006    2007    2008    2009    2010   
#>   1  273412   91797  235515  172459  148427  190997  155534  167162  208143
#>   2  172176  531816  146920  271017  175206  177494  259601  177602  141436
#>    year
#> age 2011    2012    2013    2014    2015    2016    2017   
#>   1  163503   98149  129467  208745  127813  128908  115058
#>   2  175631  205694  177076  209915  226503  113194  143659
#> 
#> units:  1000 
# JOIN over year dimension
x <- catch.n(ple4)[,10:20]
y <- catch.n(ple4)[,21:25]
join(x, y)
#> An x of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>     year
#> age  1966   1967   1968   1969   1970   1971   1972   1973   1974   1975  
#>   1   39663  37966  52596 109458 117963  73201  61075 245992 216252 187654
#>   2  111166  98311  82428  87678 133995 126945  83724  76932 308599 237186
#>   3  462675 120682 105022  74642  66343 100832 108373  77394  66811 232623
#>   4   61390 259964  71630  59703  41495  39796  67677  74298  47874  36792
#>   5   35188  35582 157423  45775  39552  27757  26518  42479  40611  23001
#>   6   30722  20187  21933 103359  30184  25591  17801  16061  22360  18900
#>   7   15319  15626  11271  12474  57327  17181  15407  10557   8600  11126
#>   8   10118   8731   9465   6748   7215  33999  10747   9710   6360   4998
#>   9    5832   6397   5732   6186   4365   4768  23097   7322   6455   4079
#>   10  13434  12785  14154  15528  17101  16488  15529  26611  22142  17838
#>     year
#> age  1976   1977   1978   1979   1980   1981  
#>   1  186977 311013 260242 237416 228049 185495
#>   2  168021 142113 222931 198320 218847 269603
#>   3  162809 113342  96340 152671 139742 158998
#>   4  128299  96958  69720  56458  80323  65083
#>   5   17915  70724  58169  40408  28828  35922
#>   6   11094   9944  41726  31902  19874  13526
#>   7    9921   6355   5573  21132  15388   9995
#>   8    6529   5847   3587   2989  11114   8075
#>   9    3089   3861   3341   2029   1677   6107
#>   10  13250   9737   8319   7618   6699   5886
#> 
#> units:  1000 
div <- divide(catch.n(ple4), dim=1)
is(div)
#> [1] "FLQuants" "FLlst"    "list"     "vector"  
length(div)
#> [1] 10
join(div)
#> An x of class "FLQuant"
#> , , unit = unique, season = all, area = unique
#> 
#>     year
#> age  1957    1958    1959    1960    1961    1962    1963    1964    1965   
#>   1    42703   72733   99992   97351  105216   65816   51939  167733   41740
#>   2    40141   71295  120598  152894  135020  147179  111599  116859  446985
#>   3    79353   52032   80619  116614  137289  129968  161467  126250  123478
#>   4    56560   67369   37763   51480   72243   89048   83926   90728   61372
#>   5    31888   35849   43351   24005   32459   46321   57930   52829   53769
#>   6    10988   21828   23811   27316   14743   20597   30974   38432   32417
#>   7    12050    8568   14322   13941   15632    8738   12305   17097   18842
#>   8     9596    8611    6000    9719    9045    9787    5372    7257    9370
#>   9     5495    7051    6933    4592    6532    5770    6710    3824    4806
#>   10   11779   14773   16726   15503   12505   13594   16653   19738   16512
#>     year
#> age  1966    1967    1968    1969    1970    1971    1972    1973    1974   
#>   1    39663   37966   52596  109458  117963   73201   61075  245992  216252
#>   2   111166   98311   82428   87678  133995  126945   83724   76932  308599
#>   3   462675  120682  105022   74642   66343  100832  108373   77394   66811
#>   4    61390  259964   71630   59703   41495   39796   67677   74298   47874
#>   5    35188   35582  157423   45775   39552   27757   26518   42479   40611
#>   6    30722   20187   21933  103359   30184   25591   17801   16061   22360
#>   7    15319   15626   11271   12474   57327   17181   15407   10557    8600
#>   8    10118    8731    9465    6748    7215   33999   10747    9710    6360
#>   9     5832    6397    5732    6186    4365    4768   23097    7322    6455
#>   10   13434   12785   14154   15528   17101   16488   15529   26611   22142
#>     year
#> age  1975    1976    1977    1978    1979    1980    1981    1982    1983   
#>   1   187654  186977  311013  260242  237416  228049  185495  378858  312379
#>   2   237186  168021  142113  222931  198320  218847  269603  249567  462799
#>   3   232623  162809  113342   96340  152671  139742  158998  195147  177915
#>   4    36792  128299   96958   69720   56458   80323   65083   69631   91099
#>   5    23001   17915   70724   58169   40408   28828   35922   27199   29609
#>   6    18900   11094    9944   41726   31902   19874   13526   16783   12739
#>   7    11126    9921    6355    5573   21132   15388    9995    7064    8865
#>   8     4998    6529    5847    3587    2989   11114    8075    5264    3930
#>   9     4079    3089    3861    3341    2029    1677    6107    4501    3172
#>   10   17838   13250    9737    8319    7618    6699    5886    8191    8233
#>     year
#> age  1984    1985    1986    1987    1988    1989    1990    1991    1992   
#>   1   330326  468121 1083226  442683  374166  245186  205384  187958  168040
#>   2   315003  294918  417134 1047256  478976  438712  298563  258742  242447
#>   3   330543  227034  213479  302191  746685  331436  307676  223193  201698
#>   4    93428  186569  128385  114725  148045  337986  152615  153467  115797
#>   5    41553   46044   96350   65923   56420   71205  168825   80728   82734
#>   6    14251   20730   23033   46662   31129   26394   33026   78235   38324
#>   7     6894    7681   10371   10445   19869   12392    9828   12398   31919
#>   8     5313    4138    4255    5248    4881    8448    5182    4630    6547
#>   9     2486    3255    2438    2503    2917    2412    4215    3061    3024
#>   10    6983    5857    6300    6661    6327    5119    3977    5138    5861
#>     year
#> age  1993    1994    1995    1996    1997    1998    1999    2000    2001   
#>   1   104637   93290  126855  105190  272197   91658   91338  128526   97495
#>   2   211488  128363  128617  232415  255917  701954  186961  138480  187738
#>   3   183104  156030  106283  129090  242379  221681  505281  147232  142364
#>   4   100872   88972   79720   56088   58914   85780   76361  242206   92616
#>   5    60965   51633   44765   38876   25345   24336   34618   32822  109946
#>   6    40692   30199   25052   21494   18510   11435    9805   12639   12253
#>   7    16523   17190   12590   10907    9435    7209    3720    3078    4697
#>   8    15503    6602    6587    5405    4915    3755    2527    1434    1455
#>   9     3570    6302    2542    2953    2645    2236    1624    1210     716
#>   10    5513    4371    4991    4175    4410    4066    3199    2395    1900
#>     year
#> age  2002    2003    2004    2005    2006    2007    2008    2009    2010   
#>   1   273412   91797  235515  172459  148427  190997  155534  167162  208143
#>   2   172176  531816  146920  271017  175206  177494  259601  177602  141436
#>   3   199413  136174  311226   84389  183320  127413  120064  165611  125433
#>   4    77923   74693   43158  117805   37951   79448   52002   56249  101974
#>   5    41589   34002   32763   19322   52637   16996   36841   25518   29619
#>   6    47177   20056   16255   14652    8758   26392    9158   19804   13736
#>   7     5249   19345    7220    5814    6185    4385   14378    5198   11568
#>   8     2162    1820    5516    2304    2302    2628    1806    5937    2262
#>   9      593     674     542    1902     830     738     776     563    2149
#>   10    1503    1325    1331    1182    1744    1469    1476    1787    2029
#>     year
#> age  2011    2012    2013    2014    2015    2016    2017   
#>   1   163503   98149  129467  208745  127813  128908  115058
#>   2   175631  205694  177076  209915  226503  113194  143659
#>   3   125475  184253  217020  167119  179280  195889  110813
#>   4    92003   89537  119932  140222  114154  125581  131783
#>   5    58470   56102   54292   69448   78925   65419   75562
#>   6    16829   33838   30424   27804   36151   43846   38452
#>   7     7721    8358   15653   15043   15186   19752   21449
#>   8     5236    3641    4310    8559    7801    6880    7874
#>   9      988    2763    2123    2340    3873    3037    2567
#>   10    3674    4099    5958    6821    7394    8703    8883
#> 
#> units:  1000 
all.equal(join(divide(catch.n(ple4), dim=1)), catch.n(ple4))
#> [1] TRUE