Methods to compute total quant-aggregated catch, landings, discards and stock biomass from age or length-structured numbers and mean weights.
Methods to compute total quant-aggregated catch, landings, discards and stock biomass from age or length-structured numbers and mean weights.
Usage
computeLandings(object, ...)
computeDiscards(object, ...)
computeCatch(object, ...)
computeStock(object, ...)
computeHarvest(object, catch, ...)
computeLandings(object, ...)
computeDiscards(object, ...)
computeCatch(object, ...)
computeStock(object, ...)
# S4 method for class 'FLS'
computeLandings(object, na.rm = TRUE)
# S4 method for class 'FLS'
computeDiscards(object, na.rm = TRUE)
# S4 method for class 'FLS'
computeCatch(object, slot = "catch", na.rm = TRUE)
# S4 method for class 'FLS'
computeStock(object, na.rm = TRUE)
Details
These methods compute the total catch, landings, discards and stock biomass
from the quant-structured values in numbers and weight per individual. The
calculation for landings, discards and stock involves the product of the
landings/discards/stock in numbers (landings.n
, discards.n
or
stock.n
) by the individual weight-at-quant (landings.wt
,
discards.wt
or stock.wt
), as in
$$L=L_n * L_{wt}$$
By selecting slot="catch"
, computeCatch
can calculate in the
same way the total catch from the catch-at-quant and weight in the catch.
Those two values (in slots catch.n
and catch.wt
) can also be
calculated (from landings and discards) by specifying slot="n"
and
slot="wt"
respectively. Calling computeCatch
with option
slot="all"
will carry out the three calculations. In this case, the
returned object will be of class FLQuants
, with element names
catch
, catch.n
and catch.wt
, which can then be passed
directly to the catch<-
replacement method.
These methods compute the total catch, landings, discards and stock biomass
from the quant-structured values in numbers and weight per individual. The
calculation for landings, discards and stock involves the product of the
landings/discards/stock in numbers (landings.n
, discards.n
or
stock.n
) by the individual weight-at-quant (landings.wt
,
discards.wt
or stock.wt
), as in
$$L=L_n * L_{wt}$$
By selecting slot="catch"
, computeCatch
can calculate in the
same way the total catch from the catch-at-quant and weight in the catch.
Those two values (in slots catch.n
and catch.wt
) can also be
calculated (from landings and discards) by specifying slot="n"
and
slot="wt"
respectively. Calling computeCatch
with option
slot="all"
will carry out the three calculations. In this case, the
returned object will be of class FLQuants
, with element names
catch
, catch.n
and catch.wt
, which can then be passed
directly to the catch<-
replacement method.
Generic function
computeCatch(object, ...)
computeLandings(object, ...)
computeDiscards(object, ...)
computeStock(object, ...)
computeCatch(object, ...)
computeLandings(object, ...)
computeDiscards(object, ...)
computeStock(object, ...)
Examples
data(ple4)
summary(computeLandings(ple4))
#> An object of class "FLQuant" with:
#>
#> dim: age year unit season area iter
#> 1 61 1 1 1 1
#> units: t
#>
#> Min. 1st Qu. Median Mean 3rd Qu. Max. %NAs
#> 59713 82875 103162 108795 130443 187666 0
summary(computeCatch(ple4, slot="all"))
#> An object of class "FLQuants"
#>
#> Elements: catch.wt catch.n catch landings discards
#>
#> Name: catch.wt
#> dim : 10 61 1 1 1 1
#> quant: age
#> units: kg
#>
#> Min : 0.02500463
#> 1st Qu.: 0.2190491
#> Mean : 0.4378413
#> Median : 0.4175921
#> 3rd Qu.: 0.6279721
#> Max : 1.126954
#> NAs : 0 %
#> Name: catch.n
#> dim : 10 61 1 1 1 1
#> quant: age
#> units: 1000
#>
#> Min : 541.6833
#> 1st Qu.: 7740.584
#> Mean : 79380
#> Median : 32437.93
#> 3rd Qu.: 114974.9
#> Max : 1083226
#> NAs : 0 %
#> Name: catch
#> dim : 1 61 1 1 1 1
#> quant: age
#> units: t
#>
#> Min : 78360.36
#> 1st Qu.: 131216.1
#> Mean : 160583.9
#> Median : 149389.9
#> 3rd Qu.: 175881.4
#> Max : 315244.7
#> NAs : 0 %
#> Name: landings
#> dim : 1 61 1 1 1 1
#> quant: age
#> units: t
#>
#> Min : 59712.83
#> 1st Qu.: 82874.98
#> Mean : 108795.2
#> Median : 103161.8
#> 3rd Qu.: 130443
#> Max : 187666.1
#> NAs : 0 %
#> Name: discards
#> dim : 1 61 1 1 1 1
#> quant: age
#> units: t
#>
#> Min : 7434.188
#> 1st Qu.: 35985.66
#> Mean : 51788.75
#> Median : 46770.16
#> 3rd Qu.: 61510.89
#> Max : 153474.4
#> NAs : 0 %
stock(ple4) <- computeStock(ple4)
landings(ple4) <- computeLandings(ple4)
catch.n(ple4) <- computeCatch(ple4, slot="n")
catch(ple4) <- computeCatch(ple4, slot="all")
data(ple4)
summary(computeLandings(ple4))
#> An object of class "FLQuant" with:
#>
#> dim: age year unit season area iter
#> 1 61 1 1 1 1
#> units: t
#>
#> Min. 1st Qu. Median Mean 3rd Qu. Max. %NAs
#> 59713 82875 103162 108795 130443 187666 0
summary(computeCatch(ple4, slot="all"))
#> An object of class "FLQuants"
#>
#> Elements: catch.wt catch.n catch landings discards
#>
#> Name: catch.wt
#> dim : 10 61 1 1 1 1
#> quant: age
#> units: kg
#>
#> Min : 0.02500463
#> 1st Qu.: 0.2190491
#> Mean : 0.4378413
#> Median : 0.4175921
#> 3rd Qu.: 0.6279721
#> Max : 1.126954
#> NAs : 0 %
#> Name: catch.n
#> dim : 10 61 1 1 1 1
#> quant: age
#> units: 1000
#>
#> Min : 541.6833
#> 1st Qu.: 7740.584
#> Mean : 79380
#> Median : 32437.93
#> 3rd Qu.: 114974.9
#> Max : 1083226
#> NAs : 0 %
#> Name: catch
#> dim : 1 61 1 1 1 1
#> quant: age
#> units: t
#>
#> Min : 78360.36
#> 1st Qu.: 131216.1
#> Mean : 160583.9
#> Median : 149389.9
#> 3rd Qu.: 175881.4
#> Max : 315244.7
#> NAs : 0 %
#> Name: landings
#> dim : 1 61 1 1 1 1
#> quant: age
#> units: t
#>
#> Min : 59712.83
#> 1st Qu.: 82874.98
#> Mean : 108795.2
#> Median : 103161.8
#> 3rd Qu.: 130443
#> Max : 187666.1
#> NAs : 0 %
#> Name: discards
#> dim : 1 61 1 1 1 1
#> quant: age
#> units: t
#>
#> Min : 7434.188
#> 1st Qu.: 35985.66
#> Mean : 51788.75
#> Median : 46770.16
#> 3rd Qu.: 61510.89
#> Max : 153474.4
#> NAs : 0 %
stock(ple4) <- computeStock(ple4)
landings(ple4) <- computeLandings(ple4)
catch.n(ple4) <- computeCatch(ple4, slot="n")
catch(ple4) <- computeCatch(ple4, slot="all")